Сварочные технологии
Осветим проблемы важнейшего производственного процесса - сварки

Из практики технолога. Полуавтоматическая сварка судовых конструкций малых толщин

2 28252 16 мин
Вашему вниманию предлагаются некоторые экономически обоснованные технологические решения по применению полуавтоматической сварки судовых конструкций малых толщин, которым очень часто не обоснованно, не придают должного внимания или просто упускают из виду.
Особенно это актуально для малых и средних предприятий, строящих речные суда, суда прибрежного плавания, плавсредства технического флота и многое другое.
 
Часть 1. Сварочная проволока

Корпуса большинства строящихся малых судов (катера, буксиры и т.п.) и судов внутреннего плавания изготавливают из сталей нормальной прочности (ГОСТ52927-2008) толщинами 4-7мм. Приступая к строительству судна необходимо выбрать способ сварки и сварочные материалы.

Наиболее широко применяемым и хорошо освоенным способом сварки при строительстве корпусов судов является способ полуавтоматической сварки в среде СО2. На рынке сварочных материалов предлагается огромная номенклатура видов и марок сварочных проволок различных производителей.

Для выбора сварочной проволоки прежде всего надо иметь ввиду, что в зависимости от типа судна, а также от принятого принципиального технологического процесса строительства судна, протяженность сварных швов, выполняемых в нижнем положении (РА, РВ) составляет приблизительно 70% от общей протяженности, в вертикальном положении (РF,PG) около 20%,в горизонтальном и потолочном положениях (РЕ, РD, РС) около 10%.

Исходя из этого, предпочтительнее иметь сварочную проволоку одной марки с допуском Регистра к сварке во всех пространственных положениях.

Этому требованию удовлетворяют большое число порошковых проволок марок: PZ6113, HTW-711, MOST E71T-1, Pipeweld 70S-6, OK Autrod 12.66, Geka Elkor R71, Weld 71T-1 и др. и значительно меньшее число сварочных проволок сплошного сечения:SM-70, HPGS50-6, КС-28 и др. К сожалению, сварочных проволок марок типа св-08Г2С сплошного сечения от российских производителей, имеющих свидетельство об одобрении РМРС для сварки во всех пространственных положениях, в настоящее время нет (2014 г.).

Рассмотрим преимущества и недостатки порошковой (рутиловой) проволоки и проволоки сплошного сечения (типа св-08Г2С) применительно к сварке судовых конструкций с толщинами 4-7мм во всех пространственных положениях:
  • стабильный , мелкокапельный процесс сварки порошковой проволокой и гладкая поверхность шва –несомненный плюс. Однако, внешний вид сварных швов, выполненных сплошной проволокой на современном сварочном оборудовании, имеет чистую, ровную поверхность и полностью покры- вается указанным уровнем качества по ГОСТ Р ИСО 5817-2009 и ИСО17637;
  • производительность наплавки у порошковой (рутиловой) проволоки не значительно выше;
  • малое разбрызгивание при сварке порошковой проволокой уменьшает зачистные операции, но не исключает полностью;
  • расход защитного газа, несмотря на казалось бы дополнительную защиту жидкого металла шла- ком, на 30-40% выше, чем при сварке сплошной проволокой;
  • повышенные послесварочные деформации секций корпуса судна, из-за более высокой погонной энергии процесса сварки порошковой проволокой, требуют проведения дополнительных операций по правке конструкций;
  • высокая стоимость порошковой проволоки, почти в два раза превышающая стоимость проволоки сплошного сечения, дополнительный сдерживающий фактор широкого применения порошковой проволоки для сварки судовых конструкций малых толщин.
Таким образом, для сварки судовых конструкций с малыми толщинами (4-7мм) следует применять полуавтоматическую сварку в среде СО2 сварочной проволокой сплошного сечения диаметром 1,2мм, имеющую Свидетельство об одобрении Регистра во всех пространственных положениях.

Часть 2. Сварка сверху-вниз

При сварке судовых конструкций тавровые и угловые соединения, выполняемые в вертикальном положении составляют до 20% от общей протяженности сварных швов. Поэтому повышение производительности сварки таких соединений дает ощутимый экономический эффект. Одним из способов достижения этой цели является применение полуавтоматической сварки в среде СО2 вертикальных швов методом сверху – вниз.

На протяжении длительного времени во многих отраслях промышленности,в том числе и в судостроении, осторожно относились к сварке «на спуск». Этот метод применялся редко и только на очень малых толщинах. Так например, РД5Р 9083-92 (Основные положения по сварке корпусов стальных судов) допускал полуавтоматическую сварку сверху-вниз при толщине деталей до 2-х мм. В середине 90-х годов правилами Регистра были сняты ограничения на применение этого метода сварки, установлены требования, по исполнению которых верфи могут получить одобрение на его широкое применение.

До настоящего времени (2014 г.) полуавтоматическая сварка сверху-вниз применяется в незначительных объемах, в основном при изготовлении надстроек, рубок и др. тонкостенных конструкций.

Типичным дефектом угловых (тавровых) швов, выполненных методом сверху-вниз является не стабильное проплавление корня шва. Надежно выполняются однопроходные швы катетом 3,5-6 мм.

Швы с большим катетом, для надежного провара корня шва должны свариваться на подъем (снизу-вверх). Для получения гарантированного качества угловых(тавровых) швов необходимо тщательно подбирать и соблюдать оптимальные параметры процесса сварки, при которых достигается управляемый объем сварочной ванны, с формированием шва без усиления или со слегка вогнутой поверхностью.

При этом вогнутость не должна приводить к уменьшению заданного катета шва. Рекомендуется в период освоения этого метода сварки вести регулярный контроль параметров сварных швов.

Хорошие результаты достигаются при сварке сверху-вниз тавровых швов катетом 5мм судовых конструкций толщиной 6мм на следующих режимах:
 
Марка проволоки Диаметр проволоки, мм Ток, А Напряжение, В Скорость сварки, см/мин Вылет проволоки,мм Расход газа, л/мин Угол наклона горелки, град
SM-70 1,2 140-150 19-20 20 10--15 9--10 10--40

Примечания: 1. Угол наклона горелки –вниз от горизонта.
                    2. Для сварки использовалась сварочная проволока сплошного сечения марки SM-70, имеющая Свидетельство об одобрении Регистра №12.00012.294 с допуском для сварки во всех пространственных положениях, в том числе сверху-вниз (PG).

 Экономические преимущества этого метода очевидны:
  • высокая скорость сварки, обычно в 2-2,5 раза больше чем при сварке снизу-вверх;
  • уменьшение деформаций свариваемых конструкций, благодаря малой погонной энергии процесса сварки, что сокращает объем работ по правке;
  • практически исключаются запиловочные операции по исправлению геометрии сварных швов из-за отсутствия наплывов, подрезов, неплавного сопряжения сварного шва с основным металлом.
При широком применении в судостроении сварки вертикальных швов методом сверху-вниз можно ожидать его быстрое распространение на сварку стыковых, многопроходных соединений. Примером может служить опыт применения сварки сверху-вниз в строительстве магистральных трубопроводов.

Часть 3. Подготовка кромок

Трудоемкость сварочных работ при изготовлении секций судов во многом зависит от качества сборки деталей под сварку, особенно от величины номинального зазора подготовленного под сварку соединения. По имеющимся данным более 50% протяженности стыкуемых соединений с V,К,Х-образными кромками собираются с минусовым допуском по сварочному зазору, при большом объеме пригоночных операций. При сварке таких соединений наблюдается недостаточная глубина проплавления корня шва с первой стороны соединения, что приводит к излишнему удалению металла корня шва с обратной стороны при выпиловке или воздушно-дуговой строжке, и в итоге - к перерасходу сварочных материалов и увеличению трудоемкости сварки металлоконструкций судна.

Одной из главных причин этого является вырезка деталей с минимальными допусками или вообще в «чистый» размер по чертежу, то есть в исходных данных для программирования часто не учитывается величина номинального зазора под сварку, как самостоятельного звена размерной цепи.
Для создания оптимальных условий сборки и сварки конкретной секции (узла) судна иногда проводится предпрограмная технологическая проработка по уточнению (изменению) конструктивных элементов кромок (зазор,притупление,угол разделки) деталей сварных соединений. В результате они могут существенным образом отличаться от общемашиностроительных стандартов (ГОСТ5264, ГОСТ14771 и др.).

Правильно выбранные типы сварных соединений и их конструктивные элементы позволяют заметно сократить трудоемкость при пригоночных работах и уменьшить до 30% трудоемкость сварочных работ и работ по правке сварных конструкций.

Ниже приводится таблица наиболее распространенных сварных соединений при изготовлении судовых конструкций с толщинами до 10мм (для С21, С25,Т7,Т8 более 10мм). В таблице использованы рекомендации ИСО9692-1 с более широкими полями допусков размеров конструктивных элементов кромок.

Таблица может быть полезна при разработке управляющих программ по вырезке деталей корпуса
судна, а также для руководства при сборке конструкций под сварку.

Таблица см. Приложение.
Часть 4. Деформации - предупреждение

Известно множество способов предупреждения и регулирования сварочных деформаций. Ниже остановимся на мероприятиях простых в осуществлении, но дающих заметный результат по уменьшению деформаций при изготовлении секций корпусных конструкций малых толщин.

На практике не менее 70% протяженности сварных швов судовых конструкций имеют завышенные высоту и ширину стыковых и катеты угловых, тавровых швов от назначенных чертежом параметров (по ГОСТ 14771-76). В этом случае, величина теплового воздействия и в итоге суммарный объем продольного укорочения на 30% выше номинального значения. Это естественно, приводит к дополнительному увеличению деформаций свариваемой конструкции при значительном перерасходе сварочных материалов (на 30-40%).Пути устранения этого фактора очевидны – стыковые швы следует выполнять с минимальным усилением, а угловые, тавровые швы с минимальными катетами швов обозначенных чертежом и таблицей сварки. Это достигается проведением регулярного контроля геометрических параметров сварных швов с помощью мерительного инструмента, шаблонов- сварщика. Положительный результат дают проведение инструктажей для сварщиков и контролеров перед новой работой.

Регулирование теплового воздействия в сторону его уменьшения весьма эффективно за счет технологических мер, таких как изменение порядка наложения шва. Приварку набора к полотнищу (обшивке) выполняют прерывистыми участками при соблюдении симметричности т.е. сначала выполняется отдельный участок шва, а затем после охлаждения и сварки других симметричных швов – сваривают оставшиеся участки между заваренными ранее. Весьма результативен хорошо известный обратно – ступенчатый метод сварки протяженных швов, особенно при сварке балок таврового набора, при этом рекомендуется спаривание однотипных тавровых узлов между собой с последующим их разделением после сварки и охлаждения.

Другим простым и эффективным методом уменьшения сварочных деформаций является закрепление конструкций перед сваркой. Закрепление производят по контуру свариваемой секции к стенду при помощи гребенок. Если имеется доступ под секцию с обратной стороны, то производится прихватка обшивки к стенду по центру секции. При невозможности постановки прихваток с обратной стороны устанавливают на секцию грузы, которые по мере выполнения сварки сдвигают в сторону, но не убирают до полного завершения и остывания сварных швов.
Наконец, установка временных (технологических) ребер жесткости без помощи которых не обходится строительство ни одного судна. Временные жесткости устанавливаются вдоль свободных кромок секции для исключения их коробления в процессе сварки. Технологические жесткости устанавливаются также при сборке и сварке секций в объем на стапеле. Их рекомендуется сохранять на все время проведения сборочно-сварочных работ по отдельному району корпуса судна.

Применение описанных (см.ч.1,2,3,4) способов уменьшения деформаций, позволяет в большинстве случаев достигать точность изготовления судовых конструкций в пределах установленных допусков, что сокращает трудоемкость при сборке и правке, а также получать значительную экономию сварочных материалов.

Часть 5. Сварка на монтаже

Большой объем сборочно - сварочных работ при формировании корпуса судна на построечном месте выполняется в замкнутых помещениях и по условиям ведения работ оказываются весьма трудоемкими из-за большого числа пригоночных работ и проведения сварки в неудобных положениях.

В результате возникающих погрешностей при ручной разметке линий притыкания набора и его установке при сборке секций, концы таврового и холостого набора оставляют не приваренными на расстоянии 250-300 мм от монтажных кромок для того, чтобы при монтаже секций концы набора можно было подогнуть до их совмещения, после чего производят доварку набора. Отсюда следует, что наиболее важным мероприятием по снижению трудоемкости сборочно-сварочных работ на монтаже секций является повышение точности изготовления секций корпуса судна.

Это достигается применением совмещенных управляющих программ разметки линий притыкания набора и резки деталей на плазменных машинах с ЧПУ. Исходные данные при составлении таких программ берутся из математической модели строящегося судна. При этом точность нанесения линий разметки и вырезки деталей обуславливается только точностью механических систем машины.

В настоящее время (2014 г.) разработка и приобретение математической модели судна и средств автоматической разметки является достаточно дорогостоящим мероприятием, оправдываемым при значительной серии строящихся судов со сложными обводами корпуса.
Несколько проще обстоит дело при строительстве судов, барж, понтонов, причалов и т.д. с прямыми обводами. Погрешностей при разметке и сборке плоских секций значительно меньше.

При монтаже достигается совмещение стыкуемых элементов секций в поле допусков, установленных требованиями технической документации (ОСТ5.9324-89),особенно, когда сборка секций и их монтаж производится одной бригадой судосборщиков.

На практике при изготовлении плоских секций, очень часто и порой безосновательно, оставляют недоваренными концы набора по монтажным кромкам, этим самым переносится значительный объем сварочных работ на монтаж. После чего доварку концов набора приходится выполнять в трудоемких вертикальном и потолочном положениях в замкнутых помещениях. Таким образом, повышая точность разметки и вырезки деталей, появляется возможность передавать на монтаж секции 100% готовности, что позволяет в 1,5 -2,0 раза уменьшить объем сварочных работ на монтаже корпуса судна.

Приложение к части 3.
 
Подготовка кромок сварных соединений
 
Часть 6. Сварка надстроек
 
В последнее время (за 2014 г.) резко возросли требования заказчиков к внешнему виду наружных поверхностей надстроек судов. В технические требования к договору на строительство судна часто заказчиком вносится допуск на бухтиноватость не более 2 мм на шпацию, в то время как по норма- тивным документам 4-5 мм. Широко применяемыми методами тепловой правки тонкостенных конструкций порой практически невозможно достичь требуемой заказчиком величины допуска.

Для выхода из положения приходится производить установку многочисленных (дополнительных) выравнивающих ребер жесткости.

Отсюда видно, что одних технологических мер по предупреждению деформаций, изложенных в части 4 настоящей статьи, в случае ужесточения допусков на неровность наружных поверхностей надстройки, будет явно недостаточно.

Ниже предлагаются некоторые меры по борьбе с деформациями, осуществляемые на стадии проектирования тонколистовых судовых конструкций, которые совместно с известными технологическими мероприятиями облегчают решение поставленной задачи:
  • применение гофрированных листов, деталей;
  • увеличение толщины листов стенок надстройки, причем не по всему периметру, а только в местах открытых для обозрения, свободных от наружного навесного оборудования;
  • применение в возможно большем объеме прерывистых односторонних, шахматных и точечных швов. Непрерывные (сплошные) швы оставлять в местах крепления оборудования и др.расчетных местах стенок надстройки;
  • использование в качестве ребер жесткости новых видов профилей с ускоренным отводом тепла от зоны сварки. Так, например, весьма положительный результат по снижению сварочных деформаций был получен при использовании в качестве ребер жесткости прямоугольных и квадратных труб вместо уголка при изготовлении надстройки катера длиной 20 м, причем замену профиля произвели по настоянию владельца судна;
  • уменьшение расстояния между ребрами жесткости стенок надстроек для уменьшения бухтиноватости обшивки после сварки в местах открытых для обозрения.

Приведенные выше конструктивные меры в комплексе с технологическими методами предупреждения сварочных деформаций несомненно улучшит внешний вид наружных поверхностей надстроек и многократно сократит трудоемкость работ по правке.

Часть 7. Прихватки
 
Сборка судовых конструкций характеризуется значительной протяженностью собираемых сопряжений. В связи с этим трудоемкость выполнения прихваток деталей корпуса и прихваток временных (технологических) креплений, сопутствующих сборке, составляет значительную долю общей трудоёмкости – до 15% от нормы на всю сборку. Расход сварочных материалов при выполнении прихваток по нормативной документации предусматривается в объёме 10% от общей массы наплавленного металла на строительство судна (на практике до 15%).Помимо перечисленных достаточно ощутимых материальных и трудовых затрат необходимо иметь ввиду, что не качественно выполненные прихватки могут являться весьма опасным источником возникновения дефектов в сварных соединениях, влияющих на работоспособность судовых конструкций в целом.

Постановка прихваток требует определенного опыта и мастерства сварщика, задача которого обеспечить полный провар в местах их постановки, исключить резких перепадов сечения по концам прихваток, чтобы избежать запиловки, не допускать усадочных раковин с порами и трещинами и обеспечить заданные геометрические параметры прихваток (высоту, длину).

При сборке судовых конструкций прихватки выполняются в основном способом ручной дуговой сварки покрытым электродом диаметром 3-4 мм. Для качественного выполнения прихваток необходимо правильно выбрать диаметр электрода в зависимости от толщины сопрягаемых деталей, зазора между деталями, положения соединения в пространстве. При наличии электродов с большой разницей в диаметрах сварщик вынужден часто переключать режимы сварки, что не всегда выполняется и отражается на качестве прихваток. Выходом их положения является использование электродов с промежуточным диаметром. Таким универсальным электродом для постановки прихваток, а также для сварки корневых проходов сварных швов, сварки в вертикальном и потолочном положениях является электрод диаметром 3,2 мм.

Эффективность применения электродов диаметром 3,2 мм доказана зарубежным судостроением, где эти электроды являются наиболее востребованными при сборке и сварке судовых конструкций. Несмотря на введение в действие с 01.01.2011 года. Национального стандарта РФ ГОСТ Р 53689-2009 «Материалы сварочные технические условия поставки присадочных материалов…», в котором предусмотрены электроды диаметром 3,2 мм до настоящего времени (2015 года) ни один из наших производителей сварочных электродов не начал их выпуск. Наверно этому есть причины, но в одном можно быть уверенным – необходимость в отечественных электродах диаметром 3,2 мм не вызывает сомнений.

Переход на прихватку и сварку судовых конструкций электродами диаметром 3,2мм позволит значительно повысить производительность труда и качество сварочных работ и сократить издержки производства.
 
Часть 8. Изготовление тавровых узлов
 
Изготовление секций, имеющих кривизну, является наиболее трудозатратным в общем перечне сборочно-сварочных работ по строительству корпуса судна. Одной из главных причин высокой трудоёмкости является низкая точность поступающих на сборку секций сварных тавровых балок, количество которых в составе корпуса, как известно, весьма существенно. После сварки тавровые балки должны пройти правку для восстановления проектных размеров от полученных послесварочных деформаций. Для прямолинейных тавровых балок, имеющих стрелку изгиба в плоскости стенки, восстановить заданную прямолинейность не составляет труда. Для криволинейных балок, прежде всего, требуется определить величину отклонения от заданной формы, произошедшей после сварки узла.

Тавровые балки с малой кривизной проверяют по предварительно нанесённой перед сваркой прямой
контрольной линии на стенке (ОСТ5.9324-89 табл. 3,п.2), на практике про необходимость нанесения контрольной линии часто забывают. Установка не прошедших правку балок в секцию сопровождается большим объёмом пригоночных работ. При наличии на предприятии машин тепловой резки с устройством для разметки, в программу работы машины возможно ввести и нанесение контрольных линий на деталях стенки, что исключит операцию ручной разметки и «забывчивость».

Для контроля после сварки тавровых балок с большой кривизной используют шаблоны, которых на судно необходимо изготовить не малое количество. Как известно, допускаемая нормативами точность изготовления деревянных шаблонов ±2мм, погрешность измерения ±0,5мм, фактическая же точность гораздо ниже. Особые требования к точности сварных тавровых балок предъявляют при сборке секций в перевёрнутом (вверх килем) положении, когда стенки балок служат лекалами для листов наружной обшивки, где повышенные зазоры приводят к заметным местным деформациям обшивки корпуса после сварки.

Повышение точности изготовления, правки после сварки тавровых узлов и тем самым, резким снижением объема и трудоемкости пригоночных работ даёт переход на бесшаблонный метод контроля технологических операций (правки, гибки). Весьма эффективным, в данном случае, является применение сканирования геометрии сварных балок с последующим сравнением полученных данных с электронными CAD моделями. Для этой цели могут быть применены мобильные координатно-измерительные машины контактного контроля типа Romer Absolut Arm, а также различные лазерные трекеры по бесконтактному контролю. На применение последних вряд ли можно рассчитывать из-за их крайне высокой стоимости в настоящее время.

С реализацией выше перечисленных мероприятий по повышению точности сварных тавровых узлов, можно в полной мере рассчитывать на снижение трудоёмкости по сборке и сварке секций с криволинейными обводами до 40%. Другим положительным фактором использования этих средств является резкое снижение местных деформаций наружной обшивки судна, что особенно важно при строительстве пассажирских и др. судов, к которым предъявляются высокие требования к внешнему виду.
 
Часть 9. Сварочные полуавтоматы

Выбрать из огромного ассортимента предлагаемых марок сварочных полуавтоматов различных производителей оптимальный вариант, по техническим характеристикам и исполнению, бывает не просто.

Как правило, предпочтение при выборе из схожих моделей, отдается тем фирмам, которые имеют представительства в данном регионе. Расчет строится на будущее техническое сотрудничество в процессе эксплуатации приобретенного сварочного оборудования - незамедлительное исполнение гарантийных обязательств, поставка запчастей, ремонт, модернизация и т.д. Выбор конкретной марки полуавтомата зависит прежде всего от характера работы и условий эксплуатации, в нашем случае полуавтоматическая сварка судовых конструкций во всех пространственных положениях, в условиях - от закрытого цеха до открытого стапеля.

Выбор источника тока. На сегодняшний день выпрямители показывают хорошую надежность, неприхотливость к условиям эксплуатации и ремонтопригодность. 

Инверторы значительно легче выпрямителей, но этот плюс для судостроительного производства не играет особой роли, так как полуавтоматы размещаются в закрытых контейнерах и подаются к месту работы краном. Главный плюс инверторных источников тока - в наличии ряда функций и режимов, способных существенно повысить производительность и качество сварки. При принятии решения в пользу инверторных источников необходимо тщательно изучить технические возможности аппарата с проведением практических испытаний на штатных конструкциях.

Сварка соединений, приведенных в Приложении к части 3, производится в основном на малых и средних токах в диапазоне 90 -280 А. На практике продолжительность рабочего цикла сварки (ПВ) во всем диапазоне не превышает 70% из-за большого количества технологических остановок. Учитывая это, можно остановиться на источнике с номинальным сварочным током: при ПВ 100%  275А, при ПВ 60% 325А и напряжением холостого хода 16 - 40В, имея некоторый запас мощности.

Механизм подачи сварочной проволоки. Основным требованием к механизму является осуществление надежной и равномерной подачи сварочной проволоки в зону сварки с заданной скоростью, обладая при этом хорошей обильностью. В достаточно полной мере это показывают подающие механизмы с 4-х роликовыми редукторными приводами. Для повышения мобильности подающего механизма требуются устройства с возможно меньшими массогабаритными характеристиками. Особенно это необходимо при работах в условиях стапеля, когда подающий механизм часто приходится протаскивать к месту работы через узкие вырезы, люки и горловины. Примером может служить подающий механизм ПДГ-421 "Адмиралтеец" с 5 кг кассетой сварочной проволоки. 

Горелка. Выбор горелки оказывает существенное влияние на перерывы в работе, производительность, качество сварки. При выборе длины горелки, которая может составлять от 3-х до 5-ти метров и более, надо иметь ввиду, что чем длиннее горелка, тем больше времени необходимо тратить на ее профилактическое обслуживание (продувку, чистку и т.п.). Горелки длиной более 3м подключают к 4-х роликовым механиз- мам. Для токов не превышающих 350А при ПВ60% выбирают горелки с воздушным охлаждением. На практике получили признание горелки с поворотом на 360градусов шейки горелки относительно рукоятки, что часто необходимо в стесненных условиях работы (ММТ42).

Промежуточный кабель-пакет. Длина промежуточного кабеля, соединяющего источник тока с подающим механизмом, может достигать 30м. В связи с тем, что он постоянно находится в не защищенной рабочей зоне, подвергается частым повреждениям и износу. Интенсивность повреждений и износа возрастает с  увеличением длины кабель - пакета. Уменьшить длину промежуточного кабеля и горелки можно при размещении источника тока непосредственно у свариваемой секции, а подключение к сети осуществлять через переносные розеточные щиты типа ЭЩР-С. При проведении сварочных работ на стапеле электрощит и подключенные к нему сварочные полуавтоматы  размещаются на палубе строящегося заказа вблизи района сварки. 

При такой схеме подключения, помимо других преимуществ, удается уменьшить длины промежуточных кабелей и горелок до умеренных значений 10м и 3м соответственно.

Владимир Алексеевич Калинин



Комментарии   2.

Чтобы принять участие в обсуждении, пожалуйста Авторизуйтесь или Зарегистрируйтесь
-0+
#Рыбаков Алексей Викторович
02.03.2015, 22:58
Складывается впечатление, что автор, технолог по профессии, впервые столкнулся с данной проблемой. На самом деле в конструкциях речных судов, в том числе и крупных(до 140 м) толщины от 4 до 7 мм встречаются в 90% случаях, а у морских судов до 60%. Поэтому для знающих людей для этих толщин проблем нет, да и по ГОСТ 5521-93 эти толщины относились к толстолистовым сталям. А вот стали толщиной менее 3,9 мм по ГОСТ16523-97 относятся к тонколистовым. Но и они при толщинах 1,5 ... 3 мм варятся без проблем для тех, кто этим занимается. Поэтому, статья будет весьма полезной для тех технологов от судостроения, которых вдруг отлучили от больших толщин и заставляют заниматься гражданским судостроением. В связи с этим хочется и внести свою лепту, в частности обратить внимание на неправильное толковании автором таблицы приложения к части 3, что позволит избежать количество первоначальных ошибок проекта. Неправильное толкование заключается в том, что автор приводит не весь допустимый ряд толщин во мн далее...
-0+
#Калинин Владимир Алексеевич
03.03.2015, 18:56
Алексей Викторович, здесь дело не в том какая толщина относится к толстолистовым или тонколистовым, а в параметрах
подготовки кромок под сварку,собственно так и называется" часть 3.Подготовка кромок".Попробую пояснить подробнее на
том же примере С2: в ГОСТе 14771 на рис. шва виден полный провар кромок, даже указано усиление с обратной стороны g1,выполнить  протяженный шов на толщине 6мм с номинальным зазором 0мм способом УП практически не реально- получим 100% непровар или прожоги на большом токе сварки. при ограничении толщины до 4мм и увеличении номинального зазора 2мм возможно соблюсти требование ГОСТа. Поэтому приходится при выполнении швов С2 на толщинах более 4мм производить подварку шва с обратной стороны или лучше делать одностороннюю фаску т.е. переходить на тип шва С8, ведь провар надо обеспечить, без него инспектору конструкцию не сдашь, да и с трудоем-
костью все в порядке - исправлять брак стоит дороже.
Не понятно - в табл. все стыковые швы начинаются от 3мм(кроме С25). По соединениям У4,У5,Т1,Т3 и Н1 согласен, их далее...
Свежие новости
Итоги года корабелов 2024: Онежский судостроительно-судоремонтный завод
10:55 / виктория корабеловна
рекламаПодписка 2025